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Abstract. We have investigated soliton solutions and their contribution to the specific heat 
for the anisotropic xy chain in the classical and semiclassical approximation. The soliton 
solutions, which can be given analytically for the discrete classical chain, are shown to be 
stable. In the continuum approximation the classical system is equivalent to the sine-Gordon 
model. The energy of the moving soliton is determined up to second order in the soliton 
velocity. In the semiclassical approximation the magnetic chain with spin S is equivalent 
to a quantum sine-Gordon chain with coupling constant g2 = [32/S(S + 1)]’j2. Using the 
magnon phase shift in the presence of a dilute gas of solitons we have calculated the specific 
heat. We find that the semiclassical approximation reasonably describes the transition from 
the classical limit to the S = 4 model as solved exactly by Lieb, Schultz and Mattis. 

1. Introduction 

The low-temperature dynamics of one-dimensional magnetic systems has attracted 
considerable attention in recent years. The model systems mainly investigated are planar 
ferro- or antiferromagnets such as CsNiF3 and TMMC with an external magnetic field 
breaking the rotational symmetry in the xy plane. 

These systems support soliton-like excitations (domain walls), which give rise to new 
observable phenomena such as the presence of a central peak in inelastic neutron 
scattering data, an additional linewidth in resonance experiments and an additional 
maximum in the magnetic specific heat as a function of temperature or magnetic field. 

Qualitative agreement with experimental data has been obtained by mapping the spin 
chain approximately to the classical sine-Gordon (SG) chain, assuming the continuum 
approximation as well as an ideally strong planar anisotropy (Mikeska 1978,1980). For 
a more quantitative treatment corrections to these approximations have to be considered 
and, among these, quantum corrections have turned out to be most important for an 
understanding of the soliton contribution to the specific heat (Mikeska and Frahm 1986, 
Fogedby et a1 1986). 

Quantum corrections to soliton effects in magnetic chain systems have so far been 
discussed mainly in the semiclassical approximation, i.e. in an expansion in 1/S, and the 
validity of these approximations remainsuntested. In an effort to study the importance of 
quantum effects with varying spin magnitude S and to test the validity of the semiclassical 
approximation we consider in the present paper non-linear excitations in the anisotropic 
xy model defined by the Hamiltonian 

H = -.7x [(l + Y)Sx,Sx,+I + (1 - y)SY,Sy,+*]. 
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For y # 0 this model has two degenerate ground states (e.g. SX, = I S  in the classical 
limit for J > 0) and supports soliton-like excitations mediating between them. When 
compared with the familiar models describing CsNiF3 or TMMC, the exchange anisotropy 
thus replaces the magnetic field as the source of symmetry breaking, and planar behav- 
iour is favoured by the absence of exchange in the z direction rather than by single-ion 
anisotropy. The model (1.1) has the following interesting properties, which make it 
particularly well suited for our purpose. 

(i) For S = 4 the Hamiltonian can be diagonalised exactly in terms of free fermions 
and the specific heat can be calculated (Lieb et a1 (1961), referred to as LSM in the 
following). Using these results the effect of solitons has been explicitly demonstrated 
for the SzSz correlation function (Puga and Beck 1982). 

(ii) In the classical limit an exact analytic solution can be given for the static soliton 
in the discrete chain (Gochev 1983, Granovskii and Zhedanov 1986). Using spherical 
coordinates to specify the direction of the classical spin vector, 

S, = S(cos 8 ,  cos q,, cos 8, sin q,, sin 6,) (1.2) 

e ,  = o  q, = *tan-' cosech[q(n + a)] (1.3) 

this solution is given by 

with 

cosh 4 = (1 + y)/(l - y) 

and has the energy 

E,,, = 4g/y JS2 .  

The phase a is arbitrary and, quite remarkably for the discrete chain, the energy 
does not depend on a. 

In 3 2 of this paper we present results for the soliton properties of the classical 
approximation to (l.l), discussing in particular the effects of the continuum and planar 
approximations. In 3 3 the semiclassical approach is given-in particular the specific 
heat is calculated, discussed in terms of its dependence on the spin value S and compared 
with the exact results for the S = 4 chain. A short summary is given in 3 &our main 
result is that the semiclassical approximation accounts surprisingly well for the quantum 
specific heat if the different roles of spin waves in classical and quantum spin chains are 
appropriately accounted for. 

2. Solitons in the classical anisotropic xy model 

In this section we discuss solitons in the model (1.1) in the classical limit for ferromagnetic 
coupling (J  > 0) .  Using the representation (1.2), the equations of motion are given by 

( d / d t ) q ,  = JStan  B,{cos O,+,[( l  + y) cos q, cos ~ l , + ~  + (1 - y )  sin q,  sin 

(a/at)e,, = -JS[(I + Y)(COS en+' COS qn+, + COS en-1 COS qn-l) sin cp,, 

sin q n - l )  cos q,]. 

+ cos O,- , [ ( l  + y )  cos q n  cos qn-, + (1 - y )  sin q n  sin q , - l ] )  (2.1) 

- (1 - y)(cos O n + l  sin q)n+l + cos 

The simplest theoretical approach treats these equations in the continuum limit 
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(qn - qn+l el) and assumes strong planar behaviour ( 6 ,  < l ) ,  motivated by the 
absence of exchange between the z (out-of-plane) components of spin. 

It is convenient to introduce the following parameters: 

m2 = 4y  c2 = 2(JS)2 Eo = $IS2 (2.2) 
and to use the dimensionless variables f = (m/a)z and t = mct(u is the lattice constant, 
which will be set equal to unity in the following). 

The continuum approximation in our dimensionless variables corresponds to an 
expansion up to lowest order in y .  In this order the Hamiltonian (1.1) can be mapped 
exactly to the sine-Gordon (SG) model: 

The equations of motion then take the form 

a29/ar2 - a 2 q / a C 2   sin^ e = (m/V2)aq/az. (2.4) 
Thus in the simplest theoretical approach the anisotropic xy chain is equivalent to 

models describing CsNiF, and TMMC when the appropriate identifications are made for 
the parameters and the SG variable (2q in the present case). Thus the well known results 
for the SG soliton can be taken over for the domain walls in the classical xy model to 

When one wants to go beyond this simplest approach the situation for the various 
soliton-bearing models becomes different: whereas in the easy-plane chain with single- 
ion anisotropy A and external magnetic field B out-of-plane corrections are governed 
by 1/A and discreteness corrections are governed by m - B1l2, in the present model 
there is only one parameter, y ,  which governs both these corrections. Thus, as can be 
checked explicitly from the equation of motion, it is inevitable to include discreteness 
effects when one wants to go beyond the SG approximation and to consider out-of-plane 
corrections. For these reasons we use in the following the exact static soliton solution 
for the discrete lattice given in (1.3) as a starting point for further investigations. For the 
classical model we will discuss in the remainder of this section the stability of the solution 
(1.3) and an approximate treatment for slowly moving solitons. 

The stability of the soliton solution (1.3) can be investigated following Magyari and 
Thomas (1982). Expanding in the deviations: 

O(Y). 

8, -+ E O ,  q n  -+ q n  + E 3 n  (2.5) 
from the static soliton leads to stability conditions that are fulfilled if the following 
eigenvalue equation has no negative eigenvalues: 

(2.6) 2cosh (q)qn - (1 + sinh ' (4) sech 2(qn))(q,+l+ qn-l) = AV,. 

A 0 = 0  
We found that the eigenfunctions and eigenvalues are given by 

q: = sech[q(n + a)] 
$J,,~ = eikn{u + ib tanh[q(n + a)]} A k  = 2(cosh(q) - cos(k)) (2.7) 
a/b = tan(k) coth(q). 

Thus it follows that (1.3) is a stable solution of the equations of motion. Notice that 
(2.6) reduces in the continuum limit (q  < 1) to the equivalent problem for the SG model 
(Rubinstein 1970) and that the eigenfunctions (2.7) then go over to those for the SG 
system. 
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The fact that the static soliton satisfies the equations of motion enables us to inves- 
tigate slowly moving solitons via successive approximations taking the dimensionless 
velocity U = u/c as a small parameter, following Mikeska and Osano (1982). Therefore 
we make the following ansafz for 8, and 9,: 

8, = e,@) 9, = @fl(s)  + vln(s> (2.8) 
Here 8, and v, are O(u) and O(u2) respectively, CP, is the static soliton solution given 

Inserting this ansatz into the equations of motion gives 
in (1.3) ands = n - ut - no. 

8, = [ -duq /2 (1  + y)] sech(qs)(l + sinh2(q) sech(qs)). (2.9) 
Thus the kinetic energy up to O(u2) is given by 

Ekin = tu2A2 8Eom 
(2.10) 

A 2  = q2 xsech2[q(n- ut-no)]{l  +sinh2(q)sech2[q(n- ut-no)]}. 
2m(l+ Y) 

We were not able to evaluate the sum in (2.10) analytically, but numerically we find 
that replacing it by the corresponding integral is an excellent approximation for q s 1. 
The numerical calculation gives A 2  = 1.2514 for y = 0.1. The difference of A2 from unity 
shows the deviation from the ‘relativistic’ velocity dependence of the continuum SG 
model. 

3. Semiclassical theory of solitons in the anisotropic xy model 

A semiclassical approach to our model can be formulated in close analogy with the 
procedure for the easy-plane ferromagnet (Mikeska 1982). Introducing the planar rep- 
resentation of spin operators (Villain 1974) with angle 9 and S’ as canonical operators, 
expanding in S’ and performing the continuum limit , the anisotropicxy model is mapped 
to the quantum SG chain with the Hamiltonian 

H = E , g 2 1 d z [ 2 ( ~ )  1 a@ +in2 + ~ ( l - c o s ( g Q ) ) ]  m2 

where 

g2 = [32/S(S + 1)]1’2 Eo = a J g 2  m2 = 4y 
si2 = S(S + 1) cp = (2/g)@ n = (V%/gS)SZ. 

The magnitude of the coupling constant g2 quantitatively describes the quantum 
character of this theory. 

Quantum corrections to the soliton energy up to first order in g2 are found by 
considering the difference in zero-point vibrational energy between the vacuum and the 
one-soliton state, as carried through first for the continuum SG model by Dashen et al 
(1975). In the present case we start from the discrete model which at the same time 
supplies a physical cut-off (the reciprocal of the lattice constant) allowing us to avoid the 
renormalisation procedure (see Mikeska 1982) and takes into account correction terms 
beyond the SG approximation (see 0 2). Linearising the equations of motion (2.1) in @, 
and 8, one gets, as the vibration spectrum in the vacuum state, 

w r ’  = Eomg2Qk (3.2~)  
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Figure 1. Asymptotic phase shifts 6 for the even and odd scattering solutions of (3.3) and 
the total phase shift 6 = &(Se + 6"). 

(3.2b) 

The allowed k-values are given by Lk = 2nn, where n is an integer such that 

In order to investigate small vibrations in the one-soliton state, we linearise (2.1) in 
= @,, - q,, (@,, is given by (1.3)) and obtain the following eigenvalue equation 

--?G < k G n and L is the length of the system. 

8, and 
for the frequencies w (the phase CY is set equal to zero): 

w2v,  = 2.7i2(1 - y2)(1 + sinh2(q) sech2(qn))-2 

x [2cosh(q)~n - (I#,+ 1 + ~ n -  1 )(I  + sinh2(q) ~ech*(qn))]. (3.3) 
We were not able to solve this eigenvalue problem analytically. Nevertheless we can 

(i) There exists one bound state related to translational invariance, which can be 

I#n,bl = sech(qn) w b l  = 0. ( 3 . 4 ~ )  

give a complete discussion of its structure. 

given analytically as 

(ii) There exists a second bound state, which is found numerically to be given by 

b2 = EOmg2 b2 S2b2=1.0090158 fory=O.l. (3.4b) 

(iii) The remaining solutions are scattering solutions ok = Eomg2Qk with Q k  given 
in (3.2b), but the allowed k-values are now given by Lk + S(k) = 2nn (where S(k)  is 
the phase shift of the scattering solutions). Using the fact that (3.3) is invariant under 
parity transformations we have calculated the phase shifts for the even and odd solutions 
numerically. The result is shown in figure 1 for y = 0.1. Extrapolating the results to 
k = 0 we get S(k = 0) = $n, which according to Barton (1985) agrees with the existence 
of two bound states. By analogy with the work of Mikeska (1982) the energy of the static 
soliton in the semiclassical approximation is given by 

ESOI = 8Eomso1 ( 3 . 5 ~ )  

(3.5b) 
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Figure 2. The semiclassical soliton contribution to the specific heat C in units of NkBm 
(m = 2 G i s  the classical spin-wave mass) as a function of the temperature t = kBT/E,,, (E,,, 
is the semiclassical soliton energy, equation (3.5)) for different spin lengths S corrected for 
the spin-wave contribution; see the text. Dotted curve: non-linear part of the exact LSM 
result; see the text (m = 2y is the spin-wave mass for S = 4, t = k,T/E,; E, is the soliton 
energy; see (3.8)). 

Evaluating this result numerically we find that the soliton energy decreases mono- 
tonically with decreasing S and decreasing y. Breakdown of our approximation is 
indicated by msol becoming negative which occurs for S = f for all y and for S = 1 for 
y s 0.02; for S > 1 the dependence on y is rather weak except when y is very small. 

This semiclassical approach can be generalised to finite temperatures following 
Mikeska and Frahm (1986) and Fogedby et aZ(l986). The soliton contribution to the 
free-energy density is given by (/3 = (kBT)- ')  

with 

+ In(1 - exp(-/30b2)) - 2 In(I - exp(-/hjpl,)). 

The momentum integration can be carried out and the soliton contribution to the 
free energy and to the specific heat can easily be calculated numerically, using our results 
for Q k  and 6(k) .  Results for various values of S are shown in figure 2 (the temperature 
is measured in units of the soliton energy, which depends on S). 

In order to get an idea about the quality of the semiclassical approximation we want 
to compare our results for the specific heat to the exact result for S = f as given by LSM. 
This exact result of course gives the total specific heat, to  be compared with the sum of 
soliton and spin-wave contributions in our semiclassical model. We therefore have to 
calculate the spin-wave contribution to  the specific heat, For spin-wave frequencies 
co,,(q) it is given by 

(3.7) 



Solitons in the anisotropic xy chain 1493 

To obtain C,, for S = t as reliably as possible we use the spin-wave spectrum from 
(3.2) with the following renormalised parameters 

Eog2 = J m = 2y. (3.8) 
The values for Eo and g2 follow from the exact mapping of the S = $ xy model to the 

quantum SG chain (Luther 1976, 1980); this mapping gives for the bare mass 
mo = *, which is modified to the value given above after renormalisation (Coleman 
1977, Maki and Takayama 1979). To choose the correct units for the representation of 
the LSM specific heat we also need the soliton mass m, in the S = 4 chain. The relation 
between the renormalised spin-wave mass m and the soliton mass m, is given by 

m = 2m, sin[(g2/16)/(1 - g2 /8n) ] .  (3-9) 
Forg2 = 4n this gives m, = yJ, in agreement with the energy gap in the LSM excitation 

spectrum-the exact solution for the excitation spectrum of the quantum system is 
properly interpreted in terms of solitons only. 

In figure 2 we have included a plot of the difference CLSM - C,, (in units of Nk,),  
which is the quantity to be compared with the soliton contribution to the specific heat in 
our semiclassical calculation. The semiclassical result for small values of S approaches 
this ‘exact’ (apart from the uncertainties involved in the spin-wave contribution) result 
surprisingly well: it reproduces both the strong reduction of the classical specific heat 
and the broadening of this peak, which are clearly seen in quantum results. 

4. Summary 

We have investigated soliton-like excitations in the anisotropic xy chain. Assuming 
strongly planar behaviour, this system in the continuum limit can be mapped to the SG 
model in both the classical and semiclassical regime. The coupling constant describing 
the quantum character of the theory is found to be g2 = [32/S(S + 1)]1/2. This appears 
to be an underestimate, because for S = 4 it amounts to g2 = 27c which is significantly 
smaller than the value g 2  = 4n found by Luther (1976) when mapping the spin4 system 
to the SG chain. The semiclassical calculation of the soliton contribution to the specific 
heat describes qualitatively the transition from the classical limit to the LSM result for the 
S = $model: the maximum of the classical specific heat is strongly reduced and the sharp 
peak is broadened due to quantum effects. This supports speculations that a semiclassical 
calculation of the specific heat may give quantitatively useful results for S = 1 also, when 
higher-order terms in S-l are considered. This is the situation of interest for CsNiF, (S = 
1); calculations of the specific heat for this material to 0(,Y2) are now in progress 
(Fogedby et a1 1989). 

The dependence of our results for the specific heat on the spin value S also agrees 
qualitatively with experimental results (Ramirez and Wolf 1982, 1985, Kopinga et a1 
1984,1985) in showing that the magnetic specific heat of soliton-bearing quantum spin 
chains is much smaller than predicted classically. It was noted before that this reduction 
can only be understood in terms of the combination of quantum corrections and out-of- 
plane effects (Mikeska and Frahm 1986). This is consistent with the fact that the present 
result was only obtained by going beyond the continuum quantum SG theory. 
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